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Abstract— Vehicular networks will significantly enhance 
traffic safety and management thanks to the wireless exchange of 
messages between vehicles and between vehicles and 
infrastructure nodes. Vehicular networks will make use of the 
IEEE 802.11p technology in the 5.9GHz frequency band. 
Simulation studies are generally utilized to analyze the 
performance of vehicular communications and networking 
protocols. The impact of these studies can be significantly 
influenced by the accuracy of the employed models, in particular 
at the radio and physical level. In this context, this paper 
proposes a set of 48 computationally inexpensive empirical 
performance models for V2V (Vehicle-to-Vehicle) 
communications. The models have been derived from an 
extensive V2V measurement campaign, and model the PDR 
(Packet Delivery Ratio) and PSR (Packet Sensing Ratio) as a 
function of the distance between transmitter and receiver. The 
set of models include PDR and PSR curves for urban and 
highway environments considering three different transmission 
power levels and eight data rates (modulation and coding 
schemes). The proposed models can be easily integrated into 
communications and networking simulators. 

Keywords—connected vehicles; vehicular networks; empirical 
performance models; Vehicle-to-vehicle; V2V; packet delivery 
ratio; packet sensing ratio. 

I. INTRODUCTION 
Connected vehicles are a key component of the current 

automotive revolution and will be essential for the next 
generation of intelligent transportation systems [1]. Connected 
vehicles enable the dynamic exchange of information among 
vehicles (V2V, Vehicle-to-Vehicle), and among vehicles and 
infrastructure nodes (V2I, Vehicle-to-Infrastructure) using 
wireless communications. The information exchange is based 
on the periodic transmission and reception of 1-hop broadcast 
packets on the so called control channel, using the IEEE 
802.11p technology in the 5.9GHz frequency band. Each 
packet includes positioning and basic status information of the 
transmitting vehicle that is utilized by higher layer protocols 
and vehicular applications. For example, safety applications 
exploit the position and speed information of nearby vehicles 
to detect potential road dangers with sufficient time for the 
driver to react.  

Simulation studies are generally used to analyze the 
benefits of vehicular applications, and evaluate the 
performance of vehicular communication and networking 

protocols. These studies employ different types of simulators, 
including some specifically developed for vehicular 
environments such as iTETRIS [2] or Veins [3]. The validity of 
the conclusions obtained using simulations notably depend on 
the accuracy of physical layer and radio propagation models 
[4]. Accurate models can be very complex and computationally 
expensive. To find a balance between realistic modeling and 
tractability, this paper proposes a set of 48 computationally 
inexpensive empirical performance models for V2V 
communications. The set of proposed models can be easily 
used in vehicular simulations, and have been derived from an 
extensive V2V measurement campaign. They model the PDR 
(Packet Delivery Ratio) and PSR (Packet Sensing Ratio) as a 
function of the distance between transmitter and receiver. The 
PDR can be defined as the probability of correctly receiving a 
packet, and the PSR as the probability of sensing a packet 
(which might or might not be correctly received). PDR and 
PSR models have been obtained for urban and highway 
environments considering 3 different transmission powers and 
8 data rates (modulation and coding schemes). While the PDR 
models can be used to derive other performance metrics, the 
PSR models can be exploited to estimate channel load levels. 
Controlling channel load levels (e.g. using congestion and 
awareness control protocols [5]) is of paramount relevance to 
ensure the stability of vehicular networks and satisfy the 
application requirements. To the authors’ knowledge, this is 
one of the first studies deriving PSR models from experimental 
data. The proposed models can be easily integrated into 
communications and networking simulators. Detailed 
information about how to use the proposed models is provided 
in section V. 

II. RELATED WORK 
Several IEEE 802.11p measurement campaigns have been 

reported in the literature. The general aim of these studies is to 
assess the IEEE 802.11p communications performance under 
different conditions. For example, the work in [6] presents the 
results of an extensive measurement campaign conducted to 
investigate the impact of operating and propagation conditions 
on IEEE 802.11p V2I communications. The objective of the 
measurement campaign was to define a set of RSU (Road Side 
Unit) deployment guidelines to assist stakeholders in their 
deployment. Boban et al. analyze in [7] the efficiency of V2V 
and V2I communications for cooperative awareness in urban, 
suburban, and highway environments. To this aim, they exploit 
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the data obtained in four different test sites within the scope of 
the DRIVE-C2X project. Based on this data, they compute 
different awareness metrics, such as the neighborhood 
awareness ratio or the ratio of neighbors above range. These 
studies show the relevance of empirically testing the 
performance of IEEE 802.11p communications under real 
conditions, although they did not derive performance models 
from the obtained data. Some studies go one step further and 
derive performance models from the measured data. The work 
in [8] proposes a V2I packet error rate model based on 
Gilbert’s model (previously proposed to model bit error bursts 
in packet switched networks) to statistically describe the packet 
error patterns observed in an extensive measurement campaign 
conducted within the ROADSAFE project. This model was 
extended in [9] to take into account specific street layouts and 
propagation impairments. For V2V communications, the work 
in [10] proposes a model for packet loses and latency based on 
empirical data. The model takes into account speed and 
distance between vehicles. The packet loss model is based on 
the concept of profiles, where a profile represents a single 
uninterrupted wireless connection between two vehicles. The 
latency model is simpler and takes into account the statistical 
distribution of the latency values in the empirical data. The 
work in [11] characterizes for V2V scenarios the PIR (Packet 
Inter Reception) time distribution and its relationship with 
PDR, speed and distance between vehicles based on empirical 
data. To this aim, the authors employ the Gilbert-Elliot model. 

The studies reviewed show the importance of using 
computationally inexpensive performance models in vehicular 
communications and networking simulation studies, although 
they present certain limitations. First, they are normally 
designed for a fixed set of transmission parameters, and 
therefore cannot be used to e.g. identify the minimum 
transmission power needed to satisfy certain application 
requirements. Second, they are only valid for a single 
environment (e.g. urban), and cannot be used to corroborate the 
validity of a protocol in different environments. Third and last, 
they normally focus only on PDR levels or similar metrics, but 
do not model metrics related to the channel load generated, 
which is also critical for vehicular networks. The empirical 
models proposed in this paper overcome all these limitations 
by including highly tractable PDR and PSR models for 3 
different transmission powers and 8 data rates for urban and 
highway environments.  

III. METHODOLOGY 

A. Measurement campaign 
The measurement campaign was conducted near the city of 

Elche (Spain). The urban measurements were conducted in 
Mariano Benlliure street, a single-lane straight street in the city 
center with parked cars at both sides; the street is more than 
800m long (see Fig. 1). The highway-like measurements were 
conducted in one of the industrial areas of Elche, in a two-lane 
straight street without parked cars or buildings (see Fig. 2), and 
that is more than 1km long.  

The measurement campaign was conducted using two 
OBUs (On Board Units), each of them equipped with an IEEE 
802.11p DENSO WSU (Wireless Safety Unit) prototype and 
mounted on a standard vehicle. Each OBU used a single 

Nippon omni-directional antenna with 0dBi gain, placed on the 
roof of a vehicle and connected to the DENSO WSU prototype 
with an LMR240 antenna cable of 3m length and 
approximately 3dB cable loss. Each OBU employed a Novatel 
SMART-V1-2US-PVT GPS receiver to accurately track each 
vehicle’s position. This receiver presents a reference 
positioning accuracy of 1.8m (RMS) and 20Hz maximum 
update rate.  

 
Fig. 1. Picture of Mariano Benlliure street (Elche, Spain) where the 
measurement campaign for the urban environment was conducted. 

 
Fig. 2. Street on the industrial area of Elche, Spain, where the measurement 
campaign for the highway-like environment was conducted. 

The measurement campaign was conducted to derive the 
PDR and PSR models for 48 experiments: 3 transmission 
power levels (Pt=10, 15 and 20dBm), 8 data rates (DR=3, 4.5, 
6, 9, 12, 18, 24 and 27 Mbps) and 2 environments (urban and 
highway). Multiple test-drives were conducted for each 
experiment. In each test-drive, the transmitting OBU moved 
away while the other one was static. In all the experiments, the 
static OBU was located to have LOS (Line-of-Sight) 
conditions between transmitting and receiving antennas. To 
derive the PDR models, only the packet ID of all correctly 
received packets and the distance between transmitter and 
receiver were needed. However, to derive the PSR models, the 
CBR (Channel Busy Ratio) experienced by the receiving OBU 
was also logged. The CBR is defined as the percentage of time 
that the channel is sensed as busy, and was needed because the 
radio interface does not log sensed packets. In the proposed 
scenario, the CBR experienced by the receiver is maximum at 
short distances to the transmitter because all packets are 
sensed. As the transmitting OBU moves away, the CBR 
experienced by the receiver decreases because the probability 
of sensing the packets transmitted decreases with the distance. 
The PSR can be derived by normalizing the CBR values by the 
CBR experienced at short distances where all packets are 
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sensed. Since the DENSO WSU device logs the CBR in 
integer units, the packet transmission frequency was set to a 
high value (500Hz). The use of a high packet transmission 
frequency allowed measuring the CBR without significant 
resolution loses. Please note that there were no packet 
collisions because there was only one transmitting vehicle. The 
most important configuration parameters used in the 
experiments are summarized in Table I. 

TABLE I. CONFIGURATION PARAMETERS 

Parameter Value 

Transmission power [dBm] 10, 15, 20 

Beacon transmission frequency [Hz] 500 

Data rate [Mbps] 3, 4.5, 6, 9, 12, 18, 24, 27 

Antenna gain [dBi] 0 

Channel frequency [GHz] 5.9 

Packet size [Bytes] 250 

 

B. Mathematical models  
The proposed models are based on mathematical functions 

to maximize their tractability. There are several mathematical 
functions that can be used to model the PDR and PSR which 
have a symmetric S shape. These functions can be grouped into 
three broad categories: exponential, piecewise-defined, and 
sigmoid functions [12]. A function from each of these 
categories has been selected to identify the one that best fits the 
measured data. More complex functions can also provide good 
fits, but the selected functions provide a reasonable trade-off 
between accuracy and analytical-simulation tractability. The 
functions selected are presented in Table II, where d represents 
the distance between transmitter and receiver in meters, and A 
is the upper asymptote or maximum value (A=1 to model PDR 
and PSR curves). Fitting parameters p1 and p2 modify the 
characteristics of the S-shaped functions, such as the distance at 
which the PDR or PSR curve starts decreasing, or the slope of 
the curve. 

TABLE II. FUNCTIONS SELECTED FOR PERFORMANCE MODELING 
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A curve fitting process has been performed to derive the p1 

and p2 parameters that minimize the root-mean-square error 
(RMSE). The RMSE represents the sample standard deviation 
of the differences between the measured data and the proposed 
modeling functions. It can be calculated with the following 
equation: 

 
( ) ( )( )

M

dgdf
RMSE d

j

j

� −
=

2
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where fj(d) represents the modeling functions 
(j {exp,pie,sig}), g(d) represents the measured data and M the 
number of data samples. 

IV. RESULTS 

A. Data processing  
The data obtained in the measurement campaign needs to 

be processed to derive the PDR and PSR models. Fig. 3a 
shows the PDR curves obtained in 4 consecutive test-drives in 
the urban environment considering Pt=15dBm and 6Mbps data 
rate. Each PDR level was calculated as the ratio between the 
number of packets correctly received and the total number of 
packets transmitted. As it can be observed, the PDR can 
become especially unstable for medium and high distances in 
this environment. The average PDR of the 4 test-drives (shown 
in Fig. 3b) is used as input for the curve fitting process to 
derive the model, i.e. the p1 and p2 parameters that minimize 
the RMSE. As an example, Fig. 3b also shows the sigmoid 
function that best fits the experimental data for Pt=15dBm and 
6Mbps. 

A similar process was used to obtain the PSR models. The 
main difference is that the PSR curves were derived from the 
CBR levels measured. Fig. 4a shows the CBR levels measured 
in the same 4 consecutive drive-tests of Fig. 3 (i.e. Pt=15dBm 
and 6Mbps data rate). From these curves, the average CBR 
curve was calculated and used as input for the curve fitting 
process. The curve fitting process identifies the parameters of 
the model to fit the CBR empirical curve. The PSR model is 
then obtained by normalizing the CBR model by its maximum 
value. Fig. 4b depicts the average CBR values once they were 
normalized, and the PSR models considering the functions 
proposed (exponential, piecewise and sigmoid).  

 
Fig. 3. PDR curves (a) obtained in 4 drive-tests and (b) obtained by 
averaging the 4 drive-tests and adjusting the proposed functions. Parameters: 
Pt=15dBm, data rate = 6Mbps. Urban environment. 
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Fig. 4.  (a) CBR curves obtained in 4 test-drives and (b) PSR curves obtained 
by averaging and normalizing the 4 test-drives and adjusting the proposed 
functions. Parameters: Pt=15dBm, data rate = 6Mbps. Urban environment. 

B. Mathematical model selection 
The curve fitting process was performed for all the 

experiments conducted and the 3 mathematical functions 
selected. To have a homogeneous set of models, the objective 
was to identify the mathematical function that minimizes the 
RMSE considering the whole set of experiments. Table III 
shows the average RMSE obtained considering all the 
experiments for urban and highway scenarios and 
differentiating RMSE values for PDR and PSR models. As it 
can be observed, the sigmoid function minimizes the average 
RMSE. In fact, when comparing the RMSE obtained with the 3 
mathematical functions in each experiment, the sigmoid 
function produced the minimum value in the majority of 
experiments (see Table IV). The sigmoid function has been 
then selected to model the PDR and PSR curves from the 
measured data. 

TABLE III. AVERAGE RMSE  FOR ALL EXPERIMENTS 

Environment Model Exp Pie Sig 

Urban 
PDR 0.071 0.064 0.054 

PSR 0.085 0.08 0.072 

Highway 
PDR 0.120 0.094 0.075 

PSR 0.122 0.104 0.071 

TABLE IV. PERCENTAGE OF EXPERIMENTS WHERE EACH MATHEMATICAL 
FUNCTION PRODUCED THE MINIMUM RMSE 

Environment Model Exp Pie Sig 

Urban 
PDR 28% 16% 56% 

PSR 38% 24% 38% 

Highway 
PDR 28% 6% 66% 

PSR 16% 12% 72% 

 

C. PDR and PSR models 
Table V and Table VI present the complete set of PDR and 

PSR models derived from the measurement campaign 
conducted. Based on the sigmoid function, the p1 and p2 
parameters can be employed to easily plot and use the 
proposed models for 3 different transmission power levels and 
all IEEE 802.11p data rates. As an example, Fig. 5 depicts the 
PDR models derived for the highway environment for 
Pt=20dBm and all possible data rates. As it can be observed, 
the use of high data rates can notably reduce the 
communications range. In fact, while high PDR levels can be 
experienced up to around 500m for low data rates, the use of 
the highest data rates reduces this distance to around 100m. 
Fig. 6 shows the effect of increasing the transmission power for 
a fixed data rate (6Mbps). The results obtained show that 
increasing the transmission power by 5dB augments the 
distance at which a PDR of 0.8 is obtained by approximately 
130m. 

 
Fig. 5. PDR models derived for the highway environment and Pt=20dBm. 

 
Fig. 6. PDR models derived for the highway environment and 6Mbps. 

Fig. 7 plots the PDR and PSR models derived for a 
transmission power of 20dBm in the highway environment for 
the maximum and minimum data rates. The results obtained 
show that the difference between the PDR and PSR models can 
be very small for low data rates. This is the case because low 
data rates employ robust modulation and coding schemes and 
nearly all sensed packets were correctly decoded. However, for 
high data rates, the difference between the PDR and PSR 
curves is relevant. The use of less robust modulation and 
coding schemes results in that a lower number of sensed 
packets could be correctly decoded. 
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TABLE V. PDR AND PSR MODELS FOR THE URBAN ENVIRONMENT 

Data 
rate 

Tx. 
Power 
(dBm) 

PDR PSR 

p1 p2 p1 p2 

3 
10 0.021 270 0.021 274 
15 0.025 369 0.024 373 
20 0.005 607 0.005 624 

4.5 
10 0.011 351 0.009 394 
15 0.006 467 0.006 508 
20 0.008 446 0.008 465 

6 
10 0.015 269 0.012 310 
15 0.019 367 0.016 391 
20 0.007 591 0.008 670 

9 
10 0.025 182 0.023 234 
15 0.016 357 0.009 459 
20 0.014 382 0.009 453 

12 
10 0.032 154 0.049 203 
15 0.02 230 0.017 316 
20 0.014 361 0.008 548 

18 
10 0.029 145 0.031 233 
15 0.02 197 0.023 308 
20 0.021 256 0.007 390 

24 
10 0.042 99 0.026 185 
15 0.042 137 0.036 225 
20 0.035 182 0.019 263 

27 
10 0.046 95 0.1 224 
15 0.026 140 0.1 497 
20 0.03 156 0.036 243 

 
TABLE VI. PDR AND PSR MODELS FOR THE HIGHWAY ENVIRONMENT 

Data 
rate 

Tx. 
power 

PDR PSR 
p1 p2 p1 p2 

3 
10 0.028 538 0.028 542 
15 0.02 631 0.02 645 
20 0.023 726 0.023 738 

4.5 
10 0.014 448 0.07 502 
15 0.012 557 0.013 648 
20 0.011 679 0.009 774 

6 
10 0.017 423 0.022 460 
15 0.015 563 0.014 633 
20 0.014 703 0.011 773 

9 
10 0.011 388 0.022 463 
15 0.029 585 0.018 652 
20 0.015 660 0.019 737 

12 
10 0.01 277 0.022 397 
15 0.022 443 0.019 481 
20 0.012 570 0.016 721 

18 
10 0.011 173 0.011 369 
15 0.012 365 0.012 482 
20 0.018 517 0.011 642 

24 
10 0.037 96 0.015 242 
15 0.01 192 0.026 395 
20 0.009 340 0.017 478 

27 
10 0.042 85 0.013 195 
15 0.011 160 0.018 402 
20 0.009 281 0.017 462 

 

 
Fig. 7. PDR and PSR models for Pt=20dBm in the highway environment 
considering the maximum and minimum data rates. 

V. USING THE PDR AND PSR MODELS 
The proposed models are characterized by a low 

computational complexity and high tractability, and can hence 
be used for many different purposes. The PDR models can be 
used to derive different performance metrics in order to 
evaluate the capability of 1-hop broadcast transmissions to 
satisfy the vehicular application requirements. For example, the 
PDR models can be exploited to identify the RCR (Reliable 
Connectivity Range), defined as the distance up to which the 
experienced PDR is above certain threshold [6]. The RCR 
represents the range up to which high quality V2V 
communications can be established. Other metrics such as the 
average packet inter-reception time can also be estimated. The 
average packet inter-reception time can be estimated as the 
inverse of the PDR models provided: 

 
)(

1)(
dPDR

dPIR =  (2) 

Similarly, the probability of receiving at least one packet in 
certain time window p can also be estimated from the PDR 
models proposed. Considering that n packets are transmitted 
within the time window by a vehicle at a constant distance d 
and that packet receptions are independent, this probability can 
be estimated as: 

 ndPDRdp ))(1(1)( −−=  (3) 

The PSR models can be used to estimate the channel load 
generated by a vehicle. This can be useful to estimate the set of 
transmission parameters that minimize the channel load 
generated by a vehicle. To this aim, the PSR can be used to 
calculate the channel occupancy footprint (or footprint in 
short), defined as the total channel resources consumed by the 
radio of a vehicle in both time and space dimensions [13]. The 
footprint can be calculated as the spatial integral of the channel 
load contribution of the vehicle. This contribution is equal to 
the packet transmission frequency, F, multiplied by the packet 
duration, T, and the PSR. As a result, the footprint of a vehicle 
can be expressed as: 

 �� ⋅⋅==
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The PSR models can also be used to estimate the channel 
load experienced by a vehicle as a result of packet 
transmissions from other vehicles. In particular, the CBR 
experienced by a vehicle can be estimated as the addition of the 
load contribution of all its neighboring vehicles: 

 �
Ψ∈

⋅⋅=
i

iii dPSRTFRBC )(ˆ  (5) 

where � represents the set of neighboring vehicles, Fi 
represents the packet transmission frequency of neighbor 
vehicle i, Ti represents its packet duration, and di its distance to 
the vehicle for which the CBR is estimated. The CBR 
estimated with equation (5) is an upper bound of the actual 
CBR since it does not take into account packet collisions.  This 
is the case because when packets collide and overlap in time, 
the amount of time the channel is sensed as busy is reduced 
compared to this upper bound. 

Since the models include different transmission power 
levels, they can also be exploited to estimate the minimum 
power needed to satisfy certain application requirements, e.g. 
the minimum power needed to reach certain RCR. Any 
simulation study using the proposed models will have the 
opportunity to corroborate the results obtained in two different 
environments (urban and highway). 

VI. CONCLUSIONS 
This paper proposes a set of 48 computationally 

inexpensive empirical performance models for V2V 
communications that can be easily used for vehicular 
simulation studies. Derived from an extensive V2V 
measurement campaign, they model the PDR and PSR between 
transmitter and receiver for 3 different transmission powers 
and 8 data rates, and considering urban and highway scenarios. 
The proposed models can be easily integrated into 
communications and networking simulators.  
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